เครื่องจักรหนีบหัวคนงานดับสยอง
เมื่อเวลา 00.30 น.วันที่ 17 ธ.ค. พ.ต.ท.ศิวะ ริมฝาย สวส. สภ.บางปู จ.สมุทรปราการ รับแจ้งมีอุบัติเหตุ เครื่องจักรหนีบศีรษะคนงานเสียชีวิตภายในบริษัท แอมพาส อินดัสตรี่ จำกัด เลขที่ 164 หมู่ 4 นิคมอุตสาหกรรมซอย 8 เอ ต.แพรกษา จึงไปตรวจสอบพร้อม พ.ต.อ.วิชิต บุญชินวุฒิกุล ผกก. ชุดสืบสวน และมูลนิธิร่วมกตัญญู ที่เกิดเหตุเป็นบริษัทชิ้นส่วนและอะไหล่รถยนต์ ที่ทำจากตะกั่ว ภายในโรงงานข้างเครื่องจักรกดแบบแม่พิมพ์ขนาดใหญ่ พบศพนายวสันต์ เงินงาม อายุ 31 ปี คนงานประจำเครื่องจักร ถูกเครื่องจักรดังกล่าวซึ่งเป็นเครื่องกดแม่พิมพ์หนีบศีรษะจนใบหน้าบิดเบี้ยวกะโหลกศีรษะแตก มันสมองไหล กระดูกซี่โครงหักหลายท่อน เสียชีวิตอย่างสยอดสยองคาเครื่อง เจ้าหน้าที่และเพื่อนคนงานจึงช่วยกัน รื้อและแยกชิ้นส่วน เครื่องจักรนำศพออกมาตรวจสอบ
สอบสวนเบื้องต้นทราบว่า ก่อนเกิดเหตุขณะที่ผู้ตายและคนงานอื่น ๆ กำลังทำงานกะดึกกันตามปกติ จู่ๆเครื่องจักรที่ผู้ตายควบคุมอยู่ก็เกิดขัดข้อง ผู้ตายจึงมุดเข้าไปดูที่แม่พิมพ์ แต่ก็เกิดเหตุไม่คาดคิดเมื่อเตครื่องจักรที่หยุดชะงักเริ่มเดินเครื่อง และกดแม่พิมพ์เข้าหากันศีรษะและลำตัวของผู้ตายอย่างแรงจนเสียชีวิตคาเครื่องต่อหน้าเพื่อนร่วมงานที่ต่างตกตะลึงกับเหตุการ์ที่เกิดขึ้น ก่อนจะรวบรวมสติไปปิดสวิทซ์เครื่องจักรและช่วยกันรื้อแม่พิมพ์ออกช่วยเหลือผู้ตายออกมาได้แต่ก็พบว่าผู้ตายเสียชีวิตก่อนแล้วจึงแจ้งเจ้าหน้าที่มาตรวจสอบ เบื้องต้นเจ้าหน้าที่คาดว่า ในขณะที่ผู้ตายเดินมาดูเครื่องจักรที่เกิดขัดข้องโดยที่ไม่ทันได้ปิดสวิทซ์เครื่องจักรในระหว่างที่ผู้ตายมุดเข้าไปดู เครื่องจักรได้เกิดทำงานจึงหนีบศีรษะและลำตัวผู้ตายจนทำให้เสียชีวิตดังกล่าว อย่างไรก็ตามเจ้าหน้าที่จะได้ทำการสอบสวนข้อเท็จจริงเพื่อดำเนินการตามกฎหมายต่อไป.
Data Mining (เหมืองข้อมูล)
คือกระบวนการที่กระทำกับข้อมูลจำนวนมากเพื่อค้นหารูปแบบและความสัมพันธ์ที่ซ่อนอยู่ในชุดข้อมูลนั้น ในปัจจุบันการทำเหมืองข้อมูลได้ถูกนำไปประยุกต์ใช้ในงานหลายประเภท ทั้งในด้านธุรกิจที่ช่วยในการตัดสินใจของผู้บริหาร ในด้านวิทยาศาสตร์และการแพทย์รวมทั้งในด้านเศรษฐกิจและสังคม
Data Mining ) เปรียบเสมือนวิวัฒนาการหนึ่งในการจัดเก็บและตีความหมายข้อมูล จากเดิมที่มีการจัดเก็บข้อมูลอย่างง่ายๆ มาสู่การจัดเก็บในรูปแบบฐานข้อมูลที่สามารถดึงข้อมูลสารสนเทศมาใช้จนถึงการทำเหมืองข้อมูลที่สามารถค้นพบความรู้ที่ซ่อนอยู่ในข้อมูล หรือจะแยกๆ เป็นข้อๆ ได้ดังนี้
กระบวนการหรือการเรียงลำดับของการค้นข้อมูลจำนวนมากและเก็บข้อมูลที่เกี่ยวข้อง
การนำมาใช้โดยหน่วยงานทางธุรกิจและนักวิเคราะห์ทางการเงินหรือการนำมาใช้งานในด้านวิทยาศาสตร์เพื่อเอาข้อมูลขนาดใหญ่ที่สร้างโดยวิธีการทดลองและการสังเกตการณ์ที่ทันสมัย
การสกัดหรือแยกข้อมูลที่เป็นประโยชน์จากข้อมูลขนาดใหญ่หรือฐานข้อมูล
การวางแผนทรัพยากรขององค์กรโดยสามารถวิเคราะห์ทางสถิติและตรรกะของข้อมูลขนาดใหญ่เป็นการมองหารูปแบบที่สามารถช่วยการตัดสินใจได้
ข้อมูลที่ถูกเก็บไว้ในฐานข้อมูลหากเก็บไว้เฉย ๆ ก็จะไม่เกิดประโยชน์ดังนั้นจึงต้องมีการสกัดสารสนเทศหรือการคัดเลือกข้อมูลออกมาใช้งานส่วนที่เราต้องการ
ในอดีตเราได้ใช้คนเป็นผู้สืบค้นข้อมูลต่างๆ ในฐานข้อมูลซึ่งผู้สืบค้นจะทำการสร้างเงื่อนไขขึ้นมาตามภูมิปัญญาของผู้สืบค้น
ในปัจจุบันการวิเคราะห์ข้อมูลจากฐานข้อมูลเดียวอาจไม่ให้ความรู้เพียงพอและลึกซึ้งสำหรับการดำเนินงานภายใต้ภาวะที่มีการแข่งขันสูงและมีการเปลี่ยนแปลงที่รวดเร็วจึงจำเป็นที่จะต้องรวบรวมฐานข้อมูลหลาย ๆ ฐานข้อมูลเข้าด้วยกัน เรียกว่า “ ” ( Data Warehouse) Data Mining ในการดึงข้อมูลจากฐานข้อมูลที่มีขนาดใหญ่ เพื่อที่จะนำข้อมูลนั่นมาใช้งานให้เกิดประโยชน์สูงที่สุด
7. เพื่อเก็บเกี่ยวผลประโยชน์ให้ได้มาซึ่งสารสนเทศที่มีประโยชน์
เป็นขั้นตอนการดึงข้อมูลสำหรับการวิเคราะห์จากแหล่งที่บันทึกไว้
เป็นขั้นตอนการค้นหารูปแบบที่เป็นประโยชน์จากข้อมูลที่มีอยู่
- เป็นขั้นตอนการนำเสนอความรู้ที่ค้นพบ โดยใช้เทคนิคในการนำเสนอเพื่อให้เข้าใจ
- Knowledge Base ได้แก่ ความรู้เฉพาะด้านในงานที่ทำจะเป็นประโยชน์ต่อการสืบค้น หรือประเมินความน่าสนใจของรูปแบบผลลัพธ์ที่ได้ Data Mining Engine โดยใช้มาตรวัดความน่าสนใจในการกลั่นกรองรูปแบบผลลัทธ์ที่ได้ เพื่อให้การค้นหามุ่งเน้นเฉพาะรูปแบบที่น่าสนใจ - User Interface ส่วนติดต่อประสานระหว่างผู้ใช้กับระบบการทำเหมืองข้อมูล ช่วยให้ผู้ใช้สามารถระบุงานทำเหมืองข้อมูลที่ต้องการทำ ดูข้อมูลหรือโครงสร้างการจัดเก็บข้อมูล ประเมินผลลัพธ์ที่ได้ - ข้อมูลขนาดใหญ่ เกินกว่าจะพิจารณาความสัมพันธ์ที่ซ่อนอยู่ภายในข้อมูลได้ด้วยตาเปล่า หรือโดยการใช้ Database Management System ( DBMS ) - ข้อมูลที่มาจากหลายแหล่ง โดยอาจรวบรวมมาจากหลายระบบปฏิบัติการหรือหลาย DBMS Oracle , DB2 , MS SQL , MS Access - Mining หากข้อมูลที่มีอยู่นั้นเป็นข้อมูลที่เปลี่ยนแปลงตลอดเวลาจะต้องแก้ปัญหานี้ก่อน โดยบันทึกฐานข้อมูลนั้นไว้และนำฐานข้อมูลที่บันทึกไว้มาทำ Mining แต่เนื่องจากข้อมูลนั้นมีการเปลี่ยนแปลงอยู่ตลอดเวลา จึงทำให้ผลลัพธ์ที่ได้จาการทำ Mining สมเหตุสมผลในช่วงเวลาหนึ่งเท่านั้น ดังนั้นเพื่อให้ได้ผลลัพธ์ที่มีความถูกต้องเหมาะสมอยู่ตลอดเวลาจึงต้องทำ Mining แสดงความสัมพันธ์ของเหตุการณ์หรือวัตถุ ที่เกิดขึ้นพร้อมกัน ตัวอย่างของการประยุกต์ใช้กฎเชื่อมโยง เช่น การวิเคราะห์ข้อมูลการขายสินค้า โดยเก็บข้อมูลจาก (POS) หรือร้านค้าออนไลน์ แล้วพิจารณาสินค้าที่ผู้ซื้อมักจะซื้อพร้อมกัน เช่น ถ้าพบว่าคนที่ซื้อเทปวิดีโอมักจะซื้อเทปกาวด้วย ร้านค้าก็อาจจะจัดร้านให้สินค้าสองอย่างอยู่ใกล้กัน เพื่อเพิ่มยอดขาย หรืออาจจะพบว่าหลังจากคนซื้อหนังสือ ก แล้ว มักจะซื้อหนังสือ ข ด้วย ก็สามารถนำความรู้นี้ไปแนะนำผู้ที่กำลังจะซื้อหนังสือ ก ได้ หากฎเพื่อระบุประเภทของวัตถุจากคุณสมบัติของวัตถุ เช่น หาความสัมพันธ์ระหว่างผลการตรวจร่างกายต่าง ๆ กับการเกิดโรค โดยใช้ข้อมูลผู้ป่วยและการวินิจฉัยของแพทย์ที่เก็บไว้ เพื่อนำมาช่วยวินิจฉัยโรคของผู้ป่วย หรือการวิจัยทางการแพทย์ ในทางธุรกิจจะใช้เพื่อดูคุณสมบัติของผู้ที่จะก่อหนี้ดีหรือหนี้เสีย เพื่อประกอบการพิจารณาการอนุมัติเงินกู้ แบ่งข้อมูลที่มีลักษณะคล้ายกันออกเป็นกลุ่ม แบ่งกลุ่มผู้ป่วยที่เป็นโรคเดียวกันตามลักษณะอาการ เพื่อนำไปใช้ประโยชน์ในการวิเคราะห์หาสาเหตุของโรค โดยพิจารณาจากผู้ป่วยที่มีอาการคล้ายคลึงกัน สร้างภาพคอมพิวเตอร์กราฟิกที่สามารถนำเสนอข้อมูลมากมายอย่างครบถ้วนแทนการใช้ขัอความนำเสนอข้อมูลที่มากมาย เราอาจพบข้อมูลที่ซ้อนเร้นเมื่อดูข้อมูลชุดนั้นด้วยจินตทัศน์ การค้นหาข้อมูลโดยอาศัยเทคโนโลยีการทำเหมืองข้อมูล ภายใต้ฐานข้อมูลขนาดใหหรือคลังข้อมูล ซึ่งข้อมูลอาจถูกสะสมมานานหลายปี ผู้ใช้งานระบบสารสนเทศไม่จำเป็นต้องมีทักษะในการเขียนโปรแกรม เนื่องจากมีเครื่องมือช่วยค้นหาข้อมูลจากคลังข้อมูลได้อย่างรวดเร็ว อาจมีการประมวลผลข้อมูลแบบขนาน เพื่อเพิ่มประสิทธิภาพในการค้นหาและวิเคราะห์ข้อมูล - การจัดกลุ่มข้อมูล เช่น จัดกลุ่มลูกค้าทั้งหมดของบริษัทประกันภัยที่ประสบอุบัติเหตุ ลักษณะเดียวกันเพื่อดำเนินการต่าง ๆ ตามนโยบายของบริษัท - การคาดการณ์ถึงโอกาสในการชำระหนี้ของลูกค้าว่าสูงเท่าไหร่ - ค้นหารายการที่ดีและเหมาะสมต่อช่วงเวลาที่สุด เพื่อวางผังรายการในแต่ละเดือน - ค้นหาช่วงเวลาที่เหมาะสมกับการผลิตชิพคอมพิวเตอร์ตัวใหม่ เพื่อป้อนสู่ตลาด
การทำเหมืองข้อมูล - วิกิพีเดีย
การทำเหมืองข้อมูล (อังกฤษ: data mining) เป็นกระบวนการในการค้นหารูปแบบในชุดข้อมูลขนาดใหญ่ โดยใช้วิธีการของการเรียนรู้ของเครื่อง สถิติ และระบบฐานข้อมูล[1][2] การทำเหมืองข้อมูลเป็นขั้นตอนวิธีการในการ"การค้นหาความรู้ในฐานข้อมูล" (knowledge discovery in databases - KDD) การทำเหมืองข้อมูลเป็นเทคนิคเพื่อค้นหารูปแบบ (pattern) ของจากข้อมูลจำนวนมหาศาลโดยอัตโนมัติ โดยใช้ขั้นตอนวิธีจากวิชาสถิติ การเรียนรู้ของเครื่อง และ การรู้จำแบบ หรือในอีกนิยามหนึ่งการทำเหมืองข้อมูล คือ กระบวนการที่กระทำกับข้อมูล(โดยส่วนใหญ่จะมีจำนวนมาก) เพื่อค้นหารูปแบบ แนวทาง และความสัมพันธ์ที่ซ่อนอยู่ในชุดข้อมูลนั้น โดยอาศัยหลักสถิติ การรู้จำ การเรียนรู้ของเครื่อง และหลักคณิตศาสตร์
การประยุกต์ใช้การทำเหมืองข้อมูลได้แก่ การขายปลีกและขายส่ง การธนาคาร การประดิษฐ์และการผลิต การประกันภัย การทำงานของตำรวจ การดูแลสุขภาพ การตลาด การใช้งานอินเทอร์เน็ต การศึกษา เป็นต้น
การทำเหมืองข้อมูล จำเป็นต้องอาศัยบุคลากรจากหลายฝ่าย และต้องอาศัยความรู้จำนวนมาก ถึงจะได้รับประโยชน์อย่างแท้จริง เพราะสิ่งที่ได้จากขั้นตอนวิธีเป็นเพียงตัวเลข และข้อมูล ที่อาจจะนำไปใช้ประโยชน์ได้หรือใช้ประโยชน์อะไรไม่ได้เลยก็เป็นได้ ผู้ที่ศึกษาการทำเหมืองข้อมูลจึงควรมีความรู้รอบด้านและต้องติดต่อกับทุก ๆ ฝ่าย เพื่อให้เข้าใจถึงขอบเขตของปัญหาโดยแท้จริงก่อน เพื่อให้การทำเหมืองข้อมูลเกิดประโยชน์อย่างแท้จริง