Big Data ข้อมูลขนาดใหญ่คืออะไร ทำงานอย่างไร และนำไปใช้อะไรได้บ้าง
: Trying to access array offset on value of type null inon line: Trying to access array offset on value of type null inon line
ในยุคสมัยนี้ ในนาทีนี้ จะมีคำเท่ๆคำหนึ่งที่ผู้บริหารองค์กรไม่ว่ารัฐหรือเอกชนทั้งขนาดใหญ่ ขนาดเล็ก มักจะกล่าวกันอยู่เสมอๆว่าเราจะนำมาใช้เพื่อทำให้องค์เราได้เปรียบ ทันสมัย มีความก้าวหน้า คือ Big Data ว่าแต่ Big Data ข้อมูลขนาดใหญ่คืออะไร ทำงานอย่างไร และนำไปใช้อะไรได้บ้าง
Big Data คืออะไร
คำจำกัดความของ Big Data
เพื่อให้ความเข้าใจเกี่ยวกับ Big Data มีมากขึ้นเรามาทำความเข้าใจเกี่ยวกับคำจัดความของคำว่า Big Data กันก่อน ในราวๆปี 2001 Gartner ได้ให้คำจำกัดความของคำว่า Big Data ไว้ว่า เป็นข้อมูลที่มีความหลากหลาย มีปริมาณมากๆ และมีความเร็วมากๆ ซึ่งรู้จักกันในนาม 3Vs (สามวี)
พูดให้ง่ายๆคือ Big Data คือปริมาณข้อมูลที่มาก มีความซับซ้อน โดยเฉพาะที่มาจากแหล่งข้อมูลใหม่ๆ ด้วยปริมาณที่มากมายมหาศาลทำให้ไม่สามารถประเมินและวิเคราะห์ด้วยวิธีการ ซอฟต์แวร์ ฮาร์ดแวร์แบบเดิมๆ แต่ข้อมูลมากมายมหาศาลเหล่านี้สามารถนำมาใช้ประโยชน์ได้ในทางธุรกิจที่ในอดีตไม่สามารถใช้ได้
3Vs ของ Big Data
V ที่1 คือ VOLUME
ปริมาณข้อมูลที่มากเป็นปัจจัยที่มีความสำคัญ ในปริมาณข้อมูลที่มากมายมหาศาลนั้นที่เราจะต้องประมวลผลนั้นเป็นข้อมูลที่ไม่มีโครงสร้าง มีความหนาแน่นของข้อมูลต่ำ และข้อมูลพวกนี้อาจเป็นข้มมูลที่ไม่ทราบค่า เช่น ฟีดข้อมูลของเฟสบุ๊ค ทวีทเตอร์ การคลิ๊กบนเวปไซท์หรืออุปกรณ์แอพพลิเคชั่นต่างๆ หรืออุปกรณ์ที่มีเซนเซอร์ บางองค์การอาจมีข้อมูลให้ประมวลผลเป็นสิบๆเทราไบต์ หรือบางองกรค์อาจมีเป็น ร้อยๆเพตะไบต์
V ที่2 คือ VELOCITY
คือความเร็วของการรรับข้อมูลหรืออาจเป็นการกระทำใดๆ โดยปกติก็เป็นความเร็วสูงสุดที่ทำการสตีมข้อมูลลงในหน่วยความจำโดยตรงกับการบันทึกข้อมูลลงบนฮาร์ดดิสก์ เครื่องมือหรืออุปกรณ์ที่ใช้กับอินเตอร์เนตในสมัยนี้ก็เป็นการทำงานแบบเรียลไทม์หรือเกือบๆจะเรียลไทม์ ซึ่งจะต้องมีการประมวลผลแบบเรียลไทม์
V ที่ 3 คือ VARIETY
Variety คือความหลากหลายของชนิดข้อมูล ข้อมูลในสมัยก่อนมักเป็นพวกข้อมูลที่เป็นโครงสร้างและมีความพอดีกับฐานข้อมูลเชิงสัมพันธ์ ปัจจุบันข้อมูลมีขนาดใหญ่ขึ้นและเป็นข้อมูลแบบไม่มีโครงสร้างหรือกึ่งโครงสร้าง เช่น ข้อมูลแบบตัวอักษร ข้อมูลภาพ ข้อมูลเสียง ซึ่งต้องการการประมวลผลเพิ่มเติม เพื่อที่จะแปลความหมาย และหารายละเอียดคำอธิบายของข้อมูล (meta data)
คุณค่าและความจริงของข้อมูล Big Data
Big Data ในช่วง 2-3 ปีหลังมานี้ได้เพิ่มมาอีก 2 Vs คือ Value และ veracity ซึ่งคุณค่าและความจริง ซึ่งข้อมูลมันมีค่าอยู่ในตัวของมันเอง แต่มันจะไม่มีประโยชน์เลยถ้าเราค้นไม่พบคุณค่าของมัน และความจริงของข้อมูลและความน่าเชื่อถือว่าเราจะเชื่อถือได้มากแค่ไหน ก็มีความสำคัญเท่าเทียมกันทั้งคุณค่าและความจริงของข้อมูล
ในปัจจุบัน Big Data ได้กลายเป็นทุนหรือทรัพย์สินไปแล้ว ในบริษัทเทคโนโลยีขนาดใหญ่บางบริษัทมูลค่าของบริษัทเกิดมาจากข้อมูลของเขา และในขณะนี้เขาก็วิเคราะห์และประมวลผลเพื่อเพิ่มมูลค่าของข้อมูลให้สูงชึ้นไปอีก
และด้วยความก้าวหน้าทางเทคโนโลยีในปัจจุบันส่งเสริมให้ราคาของอุปกรณ์การเก็บข้อมูลและคอมพิวเตอร์ลดลงแบบก้าวกระโดด ทำให้การเก็บข้อมูลง่ายและมีราคาถูก การเก็บข้อมูลและการเข้าถึงข้อมูลขนาดใหญ่สามารถทำได้ง่ายๆและมีราคาถูก ทำให้การตัดสินใจด้านธุรกิจมีความแม่นยำและถูกต้องมากขึ้น
การค้นหามูลค่าของข้อมูล Big Data มันไม่ใช่แค่การวิเคราะห์ธรรมดาเท่านั้น แต่มันต้องมีกระบวนการขั้นตอนทั้งหมด ซึ่งมีตั้งแต่การวิเคราะห์เชิงลึก ความต้องการของธุรกิจ ความสามารถในการถามข้อมูลที่ถูกต้องจากผู้บริหาร การจดจำรูปแบบ การให้ข้อมูลสำหรับสมมุติฐานต่างๆ และการทำนายพฤติกรรม เป็นต้น
ประวัติและความเป็นมาของ Big Data
ถึงแม้ว่าแนวคิดเรื่องข้อมูลขนาดใหญ่หรือ Big Data จะเป็นของใหม่และมีการเริ่มทำกันในไม่กี่ปีมานี้เอง แต่ต้นกำเนิดของชุดข้อมูลขนาดใหญ่ได้มีการริเริ่มสร้างมาตั้งแต่ยุค 60 และในยุค 70 โลกของข้อมูลก็ได้เริ่มต้น และได้พัฒนาศูนย์ข้อมูลแห่งแรกขึ้น และทำการพัฒนาฐานข้อมูลเชิงสัมพันธ์ขึ้นมา
ประมาณปี 2005 เริ่มได้มีการตะหนักถึงข้อมูลปริมาณมากที่ผู้คนได้สร้างข้นมาผ่านสื่ออนไลน์ เช่น เฟสบุ๊ค ยูทูป และสื่ออนไลน์แบบอื่นๆ Hadoop เป็นโอเพ่นซอร์สเฟรมเวิร์คที่ถูกสร้างขึ้นมาในช่วงเวลาเดียวกันให้เป็นที่เก็บและวิเคราะห์ข้อมูลขนาดใหญ่ และในช่วงเวลาเดียวกัน NoSQL ได้ก็เริ่มขึ้นและได้รับความนิยมมากขึ้น
การพัฒนาโอเพนซอร์สเฟรมเวิร์ค เช่น Hadoop (และเมื่อเร็ว ๆ นี้ก็มี Spark) มีความสำคัญต่อการเติบโตของข้อมูลขนาดใหญ่ เนื่องจากทำให้ข้อมูลขนาดใหญ่ทำงานได้ง่าย และประหยัดกว่า ในช่วงหลายปีที่ผ่านมาปริมาณข้อมูลขนาดใหญ่ได้เพิ่มขึ้นอย่างรวดเร็ว ผู้คนยังคงสร้างข้อมูลจำนวนมาก ซึ่งไม่ใช่แค่มนุษย์ที่ทำมันขึ้นมา
การพัฒนาการของ IOT (Internet of Thing) ซึ่งเป็นเครื่องมืออุปกรณ์ที่เชื่อมต่อกับอินเตอร์เนตก็ทำการเก็บและรวบรวมข้อมูลซึ่งอาจเป็นเรื่องที่เกี่ยวกับพฤติกรรมการใช้งานของลูกค้า ประสิทธิภาพของสินค้า หรือการเรียนรู้ของเครื่องจักรพวกนี้ล้วนทำให้มีข้อมูลขนาดใหญ่
แม้ว่ายุคของข้อมูลขนาดใหญ่ Big Data มาถึงและได้เริ่มต้นแล้ว แต่มันก็ยังเป็นเพียงแต่ช่วงแรกๆ และระบบระบบคลาวด์คอมพิวติ้งก็ได้ขยายความเป็นไปได้มากขึ้น คลาวด์มีความสามารถในการในการใช้งานได้อย่างยืดหยุ่นได้
ตัวอย่างการนำ Big Data ไปใช้
ข้อมูลขนาดใหญ่หรือ Big Data ช่วยให้เราสามารถจัดการงานทางธุรกิจได้อย่างมีประสิทธิภาพ ได้ตั้งแต่การเก็บข้อมูลของลูกค้าเพื่อสร้างประสบการณ์ที่ดีให้กับลูกค้า เป็นต้น ต่อนี้ไปเป็นตัวอย่างเพียงส่วนหนึ่งของการใช้ข้อมูล Big Data
การพัฒนาผลิตภัณฑ์
บริษัท Netflix และ บริษัท Procter & Gamble ได้ใช้ข้อมูล Big Data ช่วยในการคาดการณ์ความต้องการของลูกค้า พวกเขาสร้างโมเดลเชิงคาดการณ์สำหรับผลิตภัณฑ์และบริการใหม่ ๆ โดยการจำแนกคุณลักษณะที่สำคัญของผลิตภัณฑ์หรือบริการในอดีตและปัจจุบันและสร้างแบบจำลองความสัมพันธ์ระหว่างคุณลักษณะเหล่านี้กับความสำเร็จในเชิงพาณิชย์ของข้อเสนอ นอกากนี้ยังมีบริษัท P&G ยังใช้ข้อมูลของสื่อสังคมออนไลน์ในการวิเคราะห์ ในการทดสอบตลาดและเปิดตัวสินค้าในช่วงต้น เพื่อวางแผนการผลิตและเปิดตัวสินค้าใหม่
การคาดการณ์เพื่อการบำรุงรักษาเครื่องจักร
ปัจจัยที่ใช้ทำนายการชำรุดของเครื่องจักรนี้ มาจากข้อมูลทั้งที่เป็นแบบมีโครงสร้างเช่น วันเดือนปี ที่ผลิต รุ่น และข้อมูลที่ไม่มีโครงสร้าง เช่นข้อมูลจากเว็นเซอร์ต่างๆ เช่นอุณภูมิของเครื่องยนต์ การทำงานผิดปกติของเครืองจักร ซึ่งข้อมูลเหล่านี้จะต้องได้รับการวิเคราะห์ก่อนที่จะเกิดปัญหา การวิเคราะห์ข้อมูลเหล่านี้ เพื่อกำหนดตารางซ่อมบำรุง เพื่อประหยัดงบการซ่อมบำรุง และรวมไปถึงการสต๊อกอะไหล่ต่างๆ เพืท่อให้การซ่อมบำรุงได้อย่างมีประสิทธิภาพ ทันเวลา และประหยัดงบประมาณ
สร้างประสบการณืที่ดีให้กับลูกค้า
ในสภาวะการแข่งขันทางการค้าในปัจจุบัน การเสนอประสบการณ์และข้อเสนอที่ดีที่สุดและตรงใจแก่ลูกค้าที่สุดก็จะเป็นผู้ได้เปรียบในการแข่งขัน ข้อมูลขนาดใหญ่หรือ Big Data ช่วยให้ธุรกิจรวบรวมข้อมูลจากสื่อสังคมออนไลน์ ผู้เข้าชมเว๊ปไซท์ ผู้เข้าใช้แอพพลิเคชั่น ข้อมูลการตอบโต้ทางโทรศัพท์ ข้อมูลการสนทนาผ่านสื่อต่างๆ เพื่อช่วยให้ปรับปรุงการสื่อสารกับลูกค้า และเพิ่มมูลค่าให้ได้มากที่สุดด้วยการส่งข้อเสนอสุดพิเศษให้ตรงใจกับลูกค้า และยังช่วยแก้ปัญหาที่เกิดกับลูกค้า เป็นการแก้ปัญหาเชิงรุกได้อย่างมีประสิทธิภาพ
การตรวจสอบการโกงและการปฏิบัติตามกฎระเบียบ
การโกงในระบบเครือข่ายอินเตอร์เนตไม่ได้มีเฉพาะจากแฮกเกอร์เท่านั้น ซึ่งเราจะต้องเผชิญกับผู้เช่ยวชาญในหลายๆรูปแบบ ในระบบการรักษาความปลอดภัยสมัยใหม่นี้ได้มีการพัฒนาอย่างไม่หยุดนิ่ง การใช้ข้อมูลขนาดใหญ่สามารถทำให้เราระบุรูปแบบของข้อมูลที่เข้าในรูปที่มิชอบ และไม่ถูกต้องตามข้อกำหนดของเราได้
การเรียนรู้ของเครื่องจักร Learning Machine
การเรียนรู้ของเครื่องจักร หรือ Learning Machine กำลังเป็นที่นิยมอยู่ในขณะนี้ ข้อมูลโดยเฉพาะอย่างยิ่งข้อมูลขนาดใหญ่เป็นเหตุผลที่เราสามารถสอนเครื่องจักรได้ การมีข้อมูลขนาดใหญ่ทำให้ง่ายในการเตรียมข้อมูลในการสอนเครื่องจักรให้สามารถเรียนรู้ได้
ประสิทธิภาพในการปฏิบัติงาน
โดยปกติประสิทธิภาพในการปฏิบัติงานเรามักไม่ทราบว่าการดำเนินงานนั้นมีประสิทธิภาพเพียงใด แต่ในพื้นที่ที่มีข้อมูลขนาดใหญ่ ด้วยข้อมูลมูลขนาดใหญ่นี้ทำให้เราสามารถวิเคราะห์ และเข้าถึง การผลิตหรือการปฏิบัติงานได้ การตอบรับของลูกค้า รวมถึงปัจจัยอื่นๆที่จะทำให้ธุรกิจหยุดชะงักหรือขัดข้องได้ และสามารถคาดการณ์ความต้องการล่วงหน้าด้วยการวิเคราะห์ข้อมูลขนาดใหญ่ ข้อมูลขนาดใหญ่หรือ Big Data นี้ยังสามารถใช้เพื่อปรับปรุงการตัดสินใจให้สอดคล้องกับความต้องการของตลาดในปัจจุบันได้อีกด้วย
การขับเคลื่อนในการสร้างสรรค์สิ่งใหม่ๆ
ข้อมูลขนาดใหญ่สามารถช่วยคุณในการสร้างสรรค์สิ่งใหม่ ๆ ได้โดยการศึกษาความสัมพันธ์ระหว่าง บุคคล สถาบัน หน่วยงาน องค์กร และกระบวนการ และดำเนินการกำหนดวิธีการใหม่ในการใช้ข้อมูลเชิงลึกเหล่านั้น ใช้ข้อมูลเชิงลึกเพื่อปรับปรุงการตัดสินใจเกี่ยวกับการพิจารณาเรื่องการเงิน วางแผนและพิจารณาแผนงาน ตรวจสอบแนวโน้มและสิ่งที่ลูกค้าต้องการ นำเสนอผลิตภัณฑ์และบริการใหม่ ๆ ใช้การกำหนดราคาแบบไดนามิก ที่มีความเป็นไปได้ไม่มีที่สิ้นสุด
Big Data ข้อมูลขนาดใหญ่ มันทำงานอย่างไร
ข้อมูลขนาดใหญ่ให้ข้อมูลเชิงลึกใหม่ ๆ เพื่อเปิดโอกาสและรูปแบบธุรกิจใหม่ ๆ การเริ่มต้นใช้งานประกอบด้วย 3 ขั้นตอนสำคัญดังนี้
การรวบรวมข้อมูล
การรวบรวมข้อมูลของ Big Data เป็นการรวบรวมข้อมูลของจากหลากหลายทั้งที่มาและการใช้งานที่แตกต่างกันอย่างมากมาย ซึ่งกลไกและเทคโนโลยีแบบดั้งเดิม ETL (extract, transform, and load) ไม่สามารถทำได้ ซึ่ง Big Data หรือ ข้อมูลขนาดใหญ่ต้องการเทคนิค วิธีการ และเทคโนโลยีใหม่ในการรวบรวมข้อมูลขนาด เทราไบต์ และอาจจะเป็นระดับเพธาไบต์เลยก็มี
ในการรวบรวมข้อมูลนั้นต้องมีการประมวลผล จัดรูปแบบ ให้เหมาะสำหรับการใช้ในการวิเคราะห์หรือใช้งานสำหรับธุรกิจหรือวัตถุประสงค์นั้นๆ
การจัดการข้อมูล
ข้อมูลขนาดใหญ่ หรือ Big Data นั้นมีความต้องการสถานที่จัดเก็บขนาดใหญ่ การจัดเก็บข้อมูลมูลขนาดใหญ่จะเป็นชนิดใดก็ได้ไม่ว่าจะเป็นแบบ on premises หรือ แบบ cloud ขึ้นกับความต้องการหรือความสะดวกในการใช้ ซึ่งเราสามารถใช้และประเมินผลได้เช่นเดียวกัน บางครั้งก็มีความจำเป็นที่ต้องจัดเก็บไว้ใกล้กับแหล่งข้อมูล หรือข้อมูลบางอันต้องการความยืดหยุ่นสูงและไม่ต้องการบริหารจัดการก็ใช้เป็นแบบ Cloud ซึ่งกำลังเป็นที่นิยมกันเป็นอย่างมาก
การวิเคราะห์
การลงทุนสร้างข้อมูลขนาดใหญ่ หรือ Big data จะมีประโยชน์หรือคุ้มค่าก็ต่อเมื่อคุณใช้และวิเคราะห์ข้อมูล การวิเคราะห์ข้อมูลทำให้เกิดความกระจ่างและชัดเจนในชุดข้อมูลที่คุณมีอยู่ การสำรวจข้อมูลยังทำให้เราค้นพบสิ่งใหม่ แชร์สิ่งที่ค้นพบใหม่ๆต่อคนอื่น สร้างรูปแบบจำลองข้อมูล ด้วยการเรียนรู้ของเครื่องจักรและปัญญาประดิษฐ์ AI และนำข้อมูลเหล่านั้นไปใช้งาน
เครดิตภาพ
Designed by Alvaro_Cabrera / Freepik
Designed by / Freepik
หน่วยที่ 1 ความรู้พื้นฐานการจัดการข้อมูลขนาดใหญ่ (Big Data)
หน้าแรก > วิชา เทคโนโลยีดิจิทัลเพื่อการจัดการอาชีพ 30001-2003 > หน่วยที่ 1 ความรู้พื้นฐานการจัดการข้อมูลขนาดใหญ่ (Big Data) ความหมายของ Big Data Big Data หมายถึง ปริมาณข้อมูลที่มหาศาล ทั้งแบบข้อมูลที่มีโครงสร้างและไม่มีโครงสร้าง ซึ่งปะปนอยู่มากมายในการทำธุรกิจในแต่ละวัน หากแต่ไม่ใช่ปริมาณของข้อมูลที่เป็นสิ่งสำคัญ สิ่งสำคัญก็คือการที่องค์กรจัดการกับข้อมูลต่างหาก การวิเคราะห์ Big Data นำไปสู่ข้อมูลเชิงลึกเพื่อการตัดสินใจที่ดีกว่าและการเคลื่อนไหวในกลยุทธ์ธุรกิจ
องค์ประกอบที่สำคัญของข้อมูล
จากภาพ จะเห็นได้ว่า องค์ประกอบของระบบ Data แบ่งออกเป็น 5 ส่วนด้วยกัน ได้แก่ 1. Data Source แหล่งที่มาของข้อมูล ซึ่งถือได้ว่า เป็นต้นน้ำ เป็นแหล่งกำเนิดของข้อมูล อาจจะเป็นระบบ โปรแกรม หรือจะเป็นมนุษย์เรา ที่สร้างให้เกิดข้อมูลขึ้นมา ทั้งนี้ เมื่อได้ชื่อว่าเป็น Big Data แล้ว ข้อมูลต่างๆ มักจะมาจากแหล่งข้อมูลที่หลากหลาย นำพามาซึ่งความยากลำบากในการจัดการโครงสร้าง หรือจัดเตรียมให้ข้อมูลที่นำมารวมกันนั้น มีความพร้อมใช้ต่อไป 2. Gateway ช่องทางการเชื่อมโยงข้อมูล การเชื่อมโยงข้อมูล เป็นส่วนที่สำคัญมาก และเป็นปัญหาใหญ่ในการทำ Big Data Project ต้องอาศัยทักษะของ Data Engineer ทั้งการเขียนโปรแกรมเอง และใช้เครื่องมือที่มีอยู่มากมาย ทั้งนี้การจะออกแบบช่องทางการเชื่อมโยงข้อมูลได้อย่างสมบูรณ์แบบ จำเป็นต้องทราบก่อนว่า จะนำข้อมูลใดไปทำอะไรต่อบ้าง มิเช่นนั้น การสร้างช่องทางการเชื่อมที่ไม่มีเป้าหมาย ก็อาจเป็นการเสียเวลาโดยเปล่าประโยชน์ 3. Storage แหล่งเก็บข้อมูล แหล่งเก็บนี้ ไม่ใช่แค่การเก็บข้อมูลจากแหล่งข้อมูล แต่เป็นการเก็บข้อมูลจากแหล่งข้อมูลหลายๆ แหล่ง เอามาไว้เพื่อรอการใช้งาน ซึ่งอาจจะเป็นที่พักข้อมูลให้พร้อมใช้ หรือจะเป็นแหล่งเก็บข้อมูลในอดีตก็เป็นได้ 4. Analytics การวิเคราะห์ข้อมูล ส่วนนี้เป็นหน้าที่หลักของ Data Scientist ซึ่งแบ่งงานออกเป็น 2 ลักษณะ คือ การวิเคราะห์เบื้องต้น โดยการใช้วิธีทางสถิติ หรือจะเป็นการวิเคราะห์เชิงลึกโดยการสร้าง Model แบบต่างๆ รวมไปถึงการใช้ Machine Learning เพื่อให้ได้ผลลัพธ์เฉพาะจงเจาะในแต่ละปัญหา และแต่ละชุดข้อมูล 5. Result/Action การใช้ผลการวิเคราะห์ข้อมูล ผลลัพธ์ที่ได้จากการวิเคราะห์สามารถนำไปใช้งานได้ 2 รูปแบบ คือ ออกเป็นรายงาน เพื่อให้ Data Analyst นำผลลัพธ์ที่ได้ไปใช้กับงานทางธุรกิจต่อไป หรือจะเป็นการนำไปกระทำเลยโดยที่ไม่ต้องมี “มนุษย์” คอยตรวจสอบ ซึ่งจำเป็นต้องมีการเขียนโปรแกรมเพิ่ม เพื่อให้มีการกระทำออกไป ที่เรียกว่า Artificial Intelligence (AI)
ลักษณะที่สำคัญของ Big Data Big data ที่มีคุณภาพสูงควรมีลักษณะพื้นฐานอยู่ 6 ประการหลักๆ (6 Vs) ดังนี้ 1. ปริมาณ (Volume) หมายถึง ปริมาณของข้อมูลควรมีจำนวนมากพอ ทำให้เมื่อนำมาวิเคราะห์แล้วจะได้ insights ที่ตรงกับความเป็นจริง เช่น การที่เรามีข้อมูลอายุ เพศ ของลูกค้าส่วนใหญ่ ทำให้เราสามารถหา demographic profile ทั่วไปของลูกค้าที่ถูกต้องได้ ถ้าเรามีข้อมูลลูกค้าแค่ส่วนน้อย ค่าที่ประมาณออกมาอาจจะไม่ตรงกับความเป็นจริง 2. ความหลากหลาย (Variety) หมายถึง รูปแบบของข้อมูลควรหลากหลายแตกต่างกันออกไป ทั้งแบบโครงสร้าง, กึ่งโครงสร้าง, ไม่มีโครงสร้าง ทำให้เราสามารถนำมาวิเคราะห์ประกอบกัน จนได้ได้ insights ครบถ้วน 3. ความเร็ว (Velocity) หมายถึง คุณลักษณะข้อมูลที่ถูกสร้างขึ้นอย่างรวดเร็วต่อเนื่องและทันเหตุการณ์ ทำให้เราสามารถวิเคราะห์ข้อมูลแบบ real-time นำผลลัพธ์มาทำการตัดสินใจและตอบสนองได้อย่างทันท่วงที เช่น ข้อมูล GPS ที่ใช้ติดตามตำแหน่งของรถ อาจจะนำมาวิเคราะห์โอกาสที่ทำให้เกิดอุบัติเหตุ และออกแบบระบบป้องกันอุบัติเหตุได้ 4. ความถูกต้อง (Veracity) หมายถึง มีความน่าเชื่อถือของแหล่งที่มาข้อมูลและความถูกต้องของชุดข้อมูล มีกระบวนการในการตรวจสอบและยืนยันความถูกต้องของข้อมูล ซึ่งมีความเกี่ยวเนื่องโดยตรงกับผลลัพท์การวิเคราะห์ข้อมูล 5. คุณค่า (Value) หมายถึง ข้อมูลมีประโยชน์และมีความสัมพันธ์ในเชิงธุรกิจ ซึ่งต้องเข้าใจก่อนว่าไม่ใช่ทุกข้อมูลจะมีประโยชน์ในการเก็บและวิเคราะห์ ข้อมูลที่มีประโยชน์จะต้องเกี่ยวข้องกับวัตถุประสงค์ทางธุรกิจ เช่นถ้าต้องการเพิ่มขีดความสามารถในการแข่งขันในตลาดของผลิตภัณฑ์ที่ขาย ข้อมูลที่มีประโยชน์ที่สุดน่าจะเป็นข้อมูลผลิตภัณฑ์ของคู่แข่ง 6. ความแปรผันได้ (Variability) หมายถึง ข้อมูลสามารถในการเปลี่ยนแปลงรูปแบบไปตามการใช้งาน หรือสามารถคิดวิเคราะห์ได้จากหลายแง่มุม และรูปแบบในการจัดเก็บข้อมูลก็อาจจะต่างกันออกไปในแต่ละแหล่งของข้อมูล คุณลักษณะเหล่านี้ทำให้การจัดการ Big Data เป็นเรื่องยาก แต่ในขณะเดียวกันก็เป็นโอกาสให้องค์กรสร้างความได้เปรียบเหนือคู่แข่งด้วยการพัฒนาขีดความสามารถในการวิเคราะห์ข้อมูล วิวัฒนาการของ Big Data ถึงแม้ว่าแนวคิดเรื่องข้อมูลขนาดใหญ่หรือ Big Data จะเป็นของใหม่และมีการเริ่มทำกันในไม่กี่ปีมานี้เอง แต่ต้นกำเนิดของชุดข้อมูลขนาดใหญ่ได้มีการริเริ่มสร้างมาตั้งแต่ยุค 60 และในยุค 70 โลกของข้อมูลก็ได้เริ่มต้น และได้พัฒนาศูนย์ข้อมูลแห่งแรกขึ้น และทำการพัฒนาฐานข้อมูลเชิงสัมพันธ์ขึ้นมา ประมาณปี 2005 เริ่มได้มีการตะหนักถึงข้อมูลปริมาณมากที่ผู้คนได้สร้างข้นมาผ่านสื่ออนไลน์ เช่น เฟสบุ๊ค ยูทูป และสื่ออนไลน์แบบอื่นๆ Hadoop เป็นโอเพ่นซอร์สเฟรมเวิร์คที่ถูกสร้างขึ้นมาในช่วงเวลาเดียวกันให้เป็นที่เก็บและวิเคราะห์ข้อมูลขนาดใหญ่ และในช่วงเวลาเดียวกัน NoSQL ได้ก็เริ่มขึ้นและได้รับความนิยมมากขึ้น การพัฒนาโอเพนซอร์สเฟรมเวิร์ค เช่น Hadoop (และเมื่อเร็ว ๆ นี้ก็มี Spark) มีความสำคัญต่อการเติบโตของข้อมูลขนาดใหญ่ เนื่องจากทำให้ข้อมูลขนาดใหญ่ทำงานได้ง่าย และประหยัดกว่า ในช่วงหลายปีที่ผ่านมาปริมาณข้อมูลขนาดใหญ่ได้เพิ่มขึ้นอย่างรวดเร็ว ผู้คนยังคงสร้างข้อมูลจำนวนมาก ซึ่งไม่ใช่แค่มนุษย์ที่ทำมันขึ้นมา การพัฒนาการของ IOT (Internet of Thing) ซึ่งเป็นเครื่องมืออุปกรณ์ที่เชื่อมต่อกับอินเตอร์เนตก็ทำการเก็บและรวบรวมข้อมูลซึ่งอาจเป็นเรื่องที่เกี่ยวกับพฤติกรรมการใช้งานของลูกค้า ประสิทธิภาพของสินค้า หรือการเรียนรู้ของเครื่องจักรพวกนี้ล้วนทำให้มีข้อมูลขนาดใหญ่ แม้ว่ายุคของข้อมูลขนาดใหญ่ Big Data มาถึงและได้เริ่มต้นแล้ว แต่มันก็ยังเป็นเพียงแต่ช่วงแรกๆ และระบบระบบคลาวด์คอมพิวติ้งก็ได้ขยายความเป็นไปได้มากขึ้น คลาวด์มีความสามารถในการในการใช้งานได้อย่างยืดหยุ่นได้
รูปแบบของข้อมูล Big Data 1. Behavioral data: ข้อมูลเชิงพฤติกรรมการใช้งาน ต่างๆ เช่น server log, พฤติกรรมการคลิกดูข้อมูล, ข้อมูลการ ใช้ ATM เป็นต้น 2. Image & sounds: ภาพถ่าย, วิดีโอ, รูปจาก google street view, ภาพถ่ายทางการแพทย์, ลายมือ, ข้อมูลเสียงที่ถูกบันทึกไว้ เป็นต้น 3. Languages: text message, ข้อความที่ถูก tweet, เนื้อหาต่างๆในเว็บไซต์ เป็นต้น 4. Records: ข้อมูลทางการแพทย์, ข้อมูลผลส�ำรวจ ที่มีขนาดใหญ่, ข้อมูลทางภาษี เป็นต้น 5. Sensors: ข้อมูลอุณหภูมิ, accelerometer, ข้อมูลทางภูมิศาสตร์ เป็นต้น
การจัดการข้อมูลขนาดใหญ่ Big Data
ก่อนที่ธุรกิจจะสามารถนำ Big Data มาใช้งานได้ พวกเขาควรพิจารณาว่าข้อมูลจะไหลเวียนไปยังสถานที่ แหล่งที่มา ระบบ เจ้าของ และผู้ใช้จำนวนมากได้อย่างไร มีห้าขั้นตอนสำคัญในการจัดการ “โครงสร้างข้อมูล” ขนาดใหญ่นี้ ซึ่งรวมถึงข้อมูลแบบดั้งเดิม ข้อมูลที่มีโครงสร้าง และข้อมูลที่ไม่มีโครงสร้างและกึ่งมีโครงสร้าง: 1) กำหนดกลยุทธ์เกี่ยวกับข้อมูลขนาดใหญ่
ในระดับสูง กลยุทธ์ข้อมูลขนาดใหญ่เป็นแผนที่ออกแบบมาเพื่อช่วยคุณในการกำกับดูแลและปรับปรุงวิธีที่คุณได้รับ จัดเก็บ จัดการ แบ่งปัน และใช้ข้อมูลภายในและภายนอกองค์กรของคุณ กลยุทธ์ข้อมูลขนาดใหญ่ช่วยปูทางไปสู่ความสำเร็จทางธุรกิจท่ามกลางข้อมูลจำนวนมาก เมื่อพัฒนากลยุทธ์ สิ่งสำคัญคือต้องพิจารณาเป้าหมายทางธุรกิจและเทคโนโลยี –ในปัจจุบันและอนาคต – และโครงการริเริ่ม การปฏิบัติกับข้อมูลขนาดใหญ่มีความจำเป็นเช่นทรัพย์สินทางธุรกิจที่มีค่าอื่นๆ แทนที่จะเป็นเพียงผลพลอยได้ของแอปพลิเคชัน 2) รู้แหล่งที่มาของข้อมูลขนาดใหญ่ กระแสข้อมูล มาจาก Internet of Things (IoT) และอุปกรณ์ที่เชื่อมต่ออื่นๆ ที่ไหลเข้าสู่ระบบไอทีจากอุปกรณ์สวมใส่ รถยนต์อัจฉริยะ อุปกรณ์ทางการแพทย์ อุปกรณ์อุตสาหกรรม และอื่นๆ คุณสามารถวิเคราะห์ข้อมูลขนาดใหญ่นี้ได้เมื่อมาถึง รวมถึงตัดสินใจเลือกข้อมูลที่จะเก็บหรือไม่เก็บ และข้อมูลใดที่ต้องมีการวิเคราะห์เพิ่มเติม
โซเชียลมีเดีย ข้อมูลเกิดจากการโต้ตอบบน Facebook, YouTube, Instagram ฯลฯ ซึ่งรวมถึงข้อมูลขนาดใหญ่จำนวนมหาศาลในรูปแบบของภาพ วิดีโอ คำพูด ข้อความ และเสียง - มีประโยชน์สำหรับฟังก์ชั่นการตลาด การขาย และการสนับสนุน ข้อมูลนี้มักจะอยู่ในรูปแบบที่ไม่มีโครงสร้างหรือกึ่งโครงสร้าง
ดังนั้นจึงเป็นความท้าทายในแบบเฉพาะ สำหรับการบริโภค และการวิเคราะห์
ข้อมูลที่เปิดเผยต่อสาธารณชน มาจากแหล่งข้อมูลแบบเปิดขนาดใหญ่เช่น data.gov ของรัฐบาลสหรัฐ, CIA World Factbook หรือพอร์ทัลข้อมูลแบบเปิดของสหภาพยุโรป
ข้อมูลขนาดใหญ่อื่นๆ อาจมาจากพื้นที่เก็บข้อมูลส่วนกลาง แหล่งข้อมูลบนระบบคลาวด์ ซัพพลายเออร์ และลูกค้า
3) การเข้าถึง จัดการ และจัดเก็บข้อมูลขนาดใหญ่
ระบบคอมพิวเตอร์สมัยใหม่มีความเร็ว พลัง และความยืดหยุ่นที่จำเป็นในการเข้าถึงข้อมูลจำนวนมหาศาลและประเภทของข้อมูลขนาดใหญ่ได้อย่างรวดเร็ว นอกเหนือจากการเข้าถึงที่เชื่อถือได้แล้ว บริษัทต่างๆยังต้องมีวิธีในการรวมข้อมูล รับประกันคุณภาพของข้อมูล การจัดระเบียบข้อมูลและการจัดเก็บ และการเตรียมข้อมูล 4) การวิเคราะห์ข้อมูลขนาดใหญ่
ด้วยเทคโนโลยีที่มีประสิทธิภาพสูง เช่น Grid Computing (การประมวลผลแบบกริด) หรือการวิเคราะห์ในหน่วยความจำ องค์กรต่างๆ จึงสามารถเลือกที่จะใช้ข้อมูลขนาดใหญ่ทั้งหมดของพวกเขามาทำการวิเคราะห์ได้ แต่ไม่ว่าจะใช้วิธีใด การวิเคราหะ์ข้อมูลขนาดใหญ่เป็นวิธีที่บริษัทต่างๆ ได้รับมูลค่าและข้อมูลเชิงลึกจากข้อมูล ปัจจุบันข้อมูลขนาดใหญ่ป้อนข้อมูลเข้าสู่ระบบการวิเคราะห์ที่มีความก้าวหน้าที่สูงขึ้น เช่น ปัญญาประดิษฐ์ 5) ตัดสินใจอย่างชาญฉลาดและใช้ข้อมูลช่วย
ข้อมูลที่ได้รับการจัดการและมีความน่าเชื่อถือนำไปสู่การวิเคราะห์ที่น่าเชื่อถือและการตัดสินใจที่น่าเชื่อถือ เพื่อให้สามารถแข่งขันได้ ธุรกิจต่างๆ จำเป็นต้องได้รับประโยชน์สูงสุดจากข้อมูลขนาดใหญ่และดำเนินงานบนพื้นฐานข้อมูล – ทำการตัดสินใจบนพื้นฐานหลักฐานที่นำเสนอโดยข้อมูลขนาดใหญ่ไม่ใช่ตามสัญชาตญาณของผู้บริหาร การขับเคลื่อนด้วยข้อมูลมีประโยชน์ที่ชัดเจน องค์กรที่ขับเคลื่อนด้วยข้อมูลจะทำงานได้ดีขึ้น สามารถคาดการณ์ได้มากขึ้น และมีผลกำไรเพิ่มขึ้น
วิธีการจัดการข้อมูล ขนาดใหญ่ Big Data ให้ดียิ่งขึ้นสะดวกขึ้น
วิธีการจัดการข้อมูล ถึงแม้ว่าแนวคิดเรื่องข้อมูลขนาดใหญ่หรือ Big Data จะเป็นของใหม่และมีการเริ่มทำกันในไม่กี่ปีมานี้เอง แต่ต้นกำเนิดของชุดข้อมูลขนาดใหญ่ได้มีการริเริ่มสร้างมาตั้งแต่ยุค 60 และในยุค 70
และได้พัฒนาศูนย์ข้อมูลแห่งแรกขึ้น และทำการพัฒนาฐานข้อมูลเชิงสัมพันธ์ขึ้นมา
ประมาณปี 2005 เริ่มได้มีการตะหนักถึงข้อมูลปริมาณมากที่ผู้คนได้สร้างข้นมาผ่านสื่ออนไลน์ เช่น เฟสบุ๊ค ยูทูป และสื่ออนไลน์แบบอื่นๆ Hadoop เป็นโอเพ่นซอร์สเฟรมเวิร์คที่ถูกสร้างขึ้นมาในช่วงเวลาเดียวกัน
ให้เป็นที่เก็บและวิเคราะห์ข้อมูลขนาดใหญ่ และในช่วงเวลาเดียวกัน NoSQL ได้ก็เริ่มขึ้นและได้รับความนิยมมากขึ้น
การพัฒนาโอเพนซอร์สเฟรมเวิร์ค เช่น Hadoop (และเมื่อเร็ว ๆ นี้ก็มี Spark) มีความสำคัญต่อการเติบโตของข้อมูลขนาดใหญ่ เนื่องจากทำให้ข้อมูลขนาดใหญ่ทำงานได้ง่าย และประหยัดกว่า
ในช่วงหลายปีที่ผ่านมาปริมาณข้อมูลขนาดใหญ่ได้เพิ่มขึ้นอย่างรวดเร็ว ผู้คนยังคงสร้างข้อมูลจำนวนมาก ซึ่งไม่ใช่แค่มนุษย์ที่ทำมันขึ้นมา
การพัฒนาการของ IOT (Internet of Thing) ซึ่งเป็นเครื่องมืออุปกรณ์ที่เชื่อมต่อกับอินเตอร์เนตก็ทำการเก็บและรวบรวมข้อมูลซึ่งอาจเป็นเรื่องที่เกี่ยวกับพฤติกรรมการใช้งานของลูกค้า ประสิทธิภาพของสินค้า
แม้ว่ายุคของข้อมูลขนาดใหญ่ Big Data มาถึงและได้เริ่มต้นแล้ว แต่มันก็ยังเป็นเพียงแต่ช่วงแรกๆ และระบบระบบคลาวด์คอมพิวติ้งก็ได้ขยายความเป็นไปได้มากขึ้น คลาวด์มีความสามารถในการในการใช้งาน
ก่อนที่ธุรกิจจะสามารถนำ Big Data มาใช้งานได้ พวกเขาควรพิจารณาว่าข้อมูลจะไหลเวียนไปยังสถานที่ แหล่งที่มา ระบบ เจ้าของ และผู้ใช้จำนวนมากได้อย่างไร มีห้าขั้นตอนสำคัญในการจัดการ “โครงสร้างข้อมูล” ขนาดใหญ่นี้ ซึ่งรวมถึงข้อมูลแบบดั้งเดิม ข้อมูลที่มีโครงสร้าง และข้อมูลที่ไม่มีโครงสร้างและกึ่งมีโครงสร้าง:
1) กำหนดกลยุทธ์เกี่ยวกับข้อมูลขนาดใหญ่
ในระดับสูง กลยุทธ์ข้อมูลขนาดใหญ่เป็นแผนที่ออกแบบมาเพื่อช่วยคุณในการกำกับดูแลและปรับปรุงวิธีที่คุณได้รับ จัดเก็บ จัดการ แบ่งปัน และใช้ข้อมูลภายในและภายนอกองค์กรของคุณ
กลยุทธ์ข้อมูลขนาดใหญ่ช่วยปูทางไปสู่ความสำเร็จทางธุรกิจท่ามกลางข้อมูลจำนวนมาก เมื่อพัฒนากลยุทธ์ สิ่งสำคัญคือต้องพิจารณาเป้าหมายทางธุรกิจและเทคโนโลยี –ในปัจจุบันและอนาคต
และโครงการริเริ่ม การปฏิบัติกับข้อมูลขนาดใหญ่มีความจำเป็นเช่นทรัพย์สินทางธุรกิจที่มีค่าอื่นๆ แทนที่จะเป็นเพียงผลพลอยได้ของแอปพลิเคชัน
กระแสข้อมูลมาจาก Internet of Things (IoT) และอุปกรณ์ที่เชื่อมต่ออื่นๆ ที่ไหลเข้าสู่ระบบไอทีจากอุปกรณ์สวมใส่ รถยนต์อัจฉริยะ อุปกรณ์ทางการแพทย์ อุปกรณ์อุตสาหกรรม และอื่นๆ
คุณสามารถวิเคราะห์ข้อมูลขนาดใหญ่นี้ได้เมื่อมาถึง รวมถึงตัดสินใจเลือกข้อมูลที่จะเก็บหรือไม่เก็บ และข้อมูลใดที่ต้องมีการวิเคราะห์เพิ่มเติม
โซเชียลมีเดีย ข้อมูลเกิดจากการโต้ตอบบน Facebook, YouTube, Instagram ฯลฯ ซึ่งรวมถึงข้อมูลขนาดใหญ่จำนวนมหาศาลในรูปแบบของภาพ วิดีโอ คำพูด ข้อความ และเสียง –
มีประโยชน์สำหรับฟังก์ชั่นการตลาด การขาย และการสนับสนุน ข้อมูลนี้มักจะอยู่ในรูปแบบที่ไม่มีโครงสร้างหรือกึ่งโครงสร้าง
ดังนั้นจึงเป็นความท้าทายในแบบเฉพาะ สำหรับการบริโภค และการวิเคราะห์
ข้อมูลที่เปิดเผยต่อสาธารณชน มาจากแหล่งข้อมูลแบบเปิดขนาดใหญ่เช่น data.gov ของรัฐบาลสหรัฐ, CIA World Factbook หรือพอร์ทัลข้อมูลแบบเปิดของสหภาพยุโรป
ข้อมูลขนาดใหญ่อื่นๆ อาจมาจากพื้นที่เก็บข้อมูลส่วนกลาง แหล่งข้อมูลบนระบบคลาวด์ ซัพพลายเออร์ และลูกค้า
3) การเข้าถึง จัดการ และจัดเก็บข้อมูลขนาดใหญ่
ระบบคอมพิวเตอร์สมัยใหม่มีความเร็ว พลัง และความยืดหยุ่นที่จำเป็นในการเข้าถึงข้อมูลจำนวนมหาศาลและประเภทของข้อมูลขนาดใหญ่ได้อย่างรวดเร็ว นอกเหนือจากการเข้าถึงที่เชื่อถือได้แล้ว
บริษัทต่างๆยังต้องมีวิธีในการรวมข้อมูล รับประกันคุณภาพของข้อมูล การจัดระเบียบข้อมูลและการจัดเก็บ และการเตรียมข้อมูล
4) การวิเคราะห์ข้อมูลขนาดใหญ่
ด้วยเทคโนโลยีที่มีประสิทธิภาพสูง เช่น Grid Computing (การประมวลผลแบบกริด) หรือการวิเคราะห์ในหน่วยความจำ องค์กรต่างๆ จึงสามารถเลือกที่จะใช้ข้อมูลขนาดใหญ่ทั้งหมดของพวกเขามาทำ
แต่ไม่ว่าจะใช้วิธีใด การวิเคราหะ์ข้อมูลขนาดใหญ่เป็นวิธีที่บริษัทต่างๆ ได้รับมูลค่าและข้อมูลเชิงลึกจากข้อมูล ปัจจุบันข้อมูลขนาดใหญ่ป้อนข้อมูลเข้าสู่ระบบการวิเคราะห์ที่มีความก้าวหน้าที่สูงขึ้น เช่น
5) ตัดสินใจอย่างชาญฉลาดและใช้ข้อมูลช่วย
ข้อมูลที่ได้รับการจัดการและมีความน่าเชื่อถือนำไปสู่การวิเคราะห์ที่น่าเชื่อถือและการตัดสินใจที่น่าเชื่อถือ เพื่อให้สามารถแข่งขันได้ ธุรกิจต่างๆ จำเป็นต้องได้รับประโยชน์สูงสุดจากข้อมูลขนาดใหญ่
และดำเนินงานบนพื้นฐานข้อมูล – ทำการตัดสินใจบนพื้นฐานหลักฐานที่นำเสนอโดยข้อมูลขนาดใหญ่ไม่ใช่ตามสัญชาตญาณของผู้บริหาร การขับเคลื่อนด้วยข้อมูลมีประโยชน์ที่ชัดเจน
ซึ่งถือได้ว่า เป็นต้นน้ำ เป็นแหล่งกำเนิดของข้อมูล อาจจะเป็นระบบ โปรแกรม หรือจะเป็นมนุษย์เรา ที่สร้างให้เกิดข้อมูลขึ้นมา ทั้งนี้ เมื่อได้ชื่อว่าเป็น Big Data แล้ว ข้อมูลต่างๆ มักจะมาจากแหล่งข้อมูล
ที่หลากหลาย นำพามาซึ่งความยากลำบากในการจัดการโครงสร้าง หรือจัดเตรียมให้ข้อมูลที่นำมารวมกันนั้น มีความพร้อมใช้ต่อไป
การเชื่อมโยงข้อมูล เป็นส่วนที่สำคัญมาก และเป็นปัญหาใหญ่ในการทำ Big Data Project ต้องอาศัยทักษะของ Data Engineer ทั้งการเขียนโปรแกรมเอง และใช้เครื่องมือที่มีอยู่มากมาย
ทั้งนี้การจะออกแบบช่องทางการเชื่อมโยงข้อมูลได้อย่างสมบูรณ์แบบ จำเป็นต้องทราบก่อนว่า จะนำข้อมูลใดไปทำอะไรต่อบ้าง มิเช่นนั้น การสร้างช่องทางการเชื่อมที่ไม่มีเป้าหมาย
แหล่งเก็บนี้ ไม่ใช่แค่การเก็บข้อมูลจากแหล่งข้อมูล แต่เป็นการเก็บข้อมูลจากแหล่งข้อมูลหลายๆ แหล่ง เอามาไว้เพื่อรอการใช้งาน ซึ่งอาจจะเป็นที่พักข้อมูลให้พร้อมใช้ หรือจะเป็นแหล่งเก็บข้อมูล
ส่วนนี้เป็นหน้าที่หลักของ Data Scientist ซึ่งแบ่งงานออกเป็น 2 ลักษณะ คือ การวิเคราะห์เบื้องต้น โดยการใช้วิธีทางสถิติ หรือจะเป็นการวิเคราะห์เชิงลึกโดยการสร้าง Model แบบต่างๆ รวมไปถึงการใช้
Machine Learning เพื่อให้ได้ผลลัพธ์เฉพาะจงเจาะในแต่ละปัญหา และแต่ละชุดข้อมูล
ทั้งนี้บริษัทเคแอนด์โอ จึงได้มุ่งเน้นการจัดการแก้ไขปัญหา จัดการเอกสาร ด้านเอกสารขององค์กรมาอย่างยาวนาน และ ให้ความสำคัญกับด้านงานเอกสาร ต่อลูกค้าเป็นอย่างดี จนถึงปัจจุบันก็ได้ความยอมรับจากองค์กร ขนาดใหญ่ ขนาดกลาง และขนาดเล็กมากมาย จึงใคร่ขออาสาดูและปัญหาด้านเอกสารให้กับองค์กรของท่านอย่างสุดความสามารถ เพราะเราเป็นหนึ่งในธุรกิจ ระบบจัดเก็บเอกสาร ที่ท่านไว้ใจได้
สนใจรับคำปรึกษา ด้านวางระบบจัดการเอกสารอิเล็กทรอนิกส์ EDMS โดยทีมงานผู้เชี่ยวชาญจาก K&O ที่มีประสบการณ์มากว่า 15 ปี รวมถึงซอฟต์แวร์ระดับโลก ติดต่อ 0 2 – 8 6 0 – 6 6 5 9
สํ า ห รั บ ท่ า น ใ ด : ที่สนใจในระบบ ECM (DMS) เราที่ยินดีช่วยเหลือโปรดติดต่อเรา